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Abstract

From ranging and tracking applications, to directed energy weapons, laser tech-

nology is very important to the military. An instrumental part of laser design and

characterization depends on knowledge of transition rates between various atomic

energy levels. Of specific interest, is determining the transition probabilities between

the 2P3/2 and 2P1/2 energy levels of an alkali-metal noble-gas laser, which is found in a

DPAL. The probabilities of transition, caused by collisions between alkali metal and

noble gas atoms, have previously been calculated using a computationally intensive

quantum mechanical model. This research project aims to develop a simplified, less

intensive method. This is accomplished through the use of a semi-classical approach,

where the colliding atoms are modeled as having a classical, straight-line trajectory.

The transition probabilities are then calculated using time-dependent perturbation

theory, where the coupling between states is obtained by expressing the diabatic cou-

pling potential as a function of time. Numerical solutions to the time-dependent

perturbation equations are obtained for various forms of coupling and are compared

with an approximate analytic solution.
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A SIMPLE MODEL FOR FINE STRUCTURE TRANSITIONS IN

ALKALI-METAL NOBLE-GAS COLLISIONS

I. Introduction

Lasers have been of great interest to the Air Force for many years, with appli-

cations including ranging, tracking, targeting, high power laser weapons, and coun-

termeasures. These lasers can generally be broken down into two broad categories

based on the lasing medium. These categories are solid state and gas phase. Current

gas phase lasers tend to have the benefits of higher beam quality and better thermal

properties (heat dissipation), as compared to solid state lasers. Historically, gas phase

lasers have been pumped by chemical reactions, such as in the Chemical Oxygen Io-

dine Laser (COIL). The COIL was invented by the Air Force Weapons Laboratory

(now Air Force Research Laboratory) in 1977, and was used aboard the Airborne

Laser (ABL).

Current gas-phase laser research interests include the Diode-Pumped Alkali Laser

(DPAL), which has the advantage of being electrically pumped by diode lasers. This

allows the DPAL to be much smaller, lighter, and less complex than the COIL. A

DPAL primarily consists of a gas chamber, a laser diode pump, and mirrors and

other optics. The gas within the chamber consists primarily of a noble gas, such as

helium, along with a relatively small amount of an evaporated alkali metal, such as

rubidium. It is commonly a three-state laser system, where arrays of diode lasers

pump electrons in the alkali metal atoms from the ground atomic energy level, 2S1/2,

to the 2P3/2 excited atomic energy level (see right side of Figure 1). Through collisions

1
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Figure 1. Adiabatic potential energy surfaces for RbHe.

with the noble gas buffer atoms, the excited electrons in the alkali metal relax to the

2P1/2 level, creating a population inversion between the 2P1/2 and the 2S1/2 levels.

This thesis focuses on the collisional de-excitation of alkali metal atoms in a gas-

phase lasing medium. As the evaporated metal and noble gas atoms approach each

other during a collision, the energy levels of the atoms undergo a complex interaction.

The alkali metal’s atomic energy levels, which are constant in the asymptotic limit

(at large atomic separations), become varying functions of the atomic separation (R),

as shown on the left side of Figure 1.

A key requirement for developing and characterizing laser technology is knowl-

edge of the transition rates of electrons between their various atomic energy levels.

Unfortunately, a direct analytic approach to determine these rates quickly becomes

too complicated to solve exactly for all but the simplest systems. In response to

this challenge, numerical techniques have been developed to solve more complicated

systems, however these methods are computationally intensive. For this project, a

2



semi-classical model that is intended to reduce the computational overhead is de-

signed. The system consists of a collision between a noble gas atom and an alkali

metal atom, and is intended to describe the collisional de-excitation in a gas-phase

laser. The simplified semi-classical model used approximates the dynamics of the

noble gas atom using a straight line trajectory, and leads to the development of a

multivariable rate integral which is then used to determine fine-structure transition

rates of the alkali atoms. The integration of this integral is primarily performed nu-

merically, using an adaptive Romberg integration routine written in C. An analytic

approximation of the transition rate integral is also described and compared to the

numeric methods.

Previous work on the fine structure transitions of alkali atoms as they collide with

noble gas atoms includes a full quantum mechanical calculation of transition rates

based on wave packet propagation on potential energy surfaces [5]. Comparisons with

these full quantum mechanical calculations as well as comparisons with experimental

results, facilitated by a compilation of experimental data [3], will be used to check

the validity of the simplified model.

3



II. Theory

2.1 The Hamiltonian for a Two-Atom Interaction

The Hamiltonian that governs the dynamics of the Alkali Metal (M) + Noble Gas

(Ng) system is given by

Ĥ = T̂Nrad
+ T̂Nang + T̂e + V̂NN + V̂eN + V̂ee + V̂SO (1)

The individual terms of this Hamiltonian are:

• Nuclear Radial Kinetic Energy

T̂Nrad
=

P̂R
2

2µMNg

(2)

where P̂R is the radial momentum operator conjugate to the internuclear sepa-

ration R =
∣∣∣~RM − ~RNg

∣∣∣, and µMNg is the nuclear reduced mass.

• Nuclear Angular Kinetic Energy

T̂Nang =
L̂2

2µMNg

∣∣∣~RM − ~RNg

∣∣∣2 (3)

where L̂ is the angular momentum operator, and ~RM and ~RNg are the nuclear

position vectors for the alkali metal and noble gas respectively.

• Electronic Kinetic Energy

T̂e =

ZM+ZNg∑
i=1

P̂ 2
i

2me

(4)

where Z is the atomic number, and me is the mass of the electron.

4



• Nuclear-Nuclear Potential Energy

V̂NN =
e2

4πε0

ZMZNg∣∣∣~RM − ~RNg

∣∣∣ (5)

where e is the magnitude of the electron charge, and ε0 is the permittivity of

free space

• Electronic-Nuclear Potential Energy

V̂eN = −
ZM+ZNg∑

i=1

e2

4πε0

 ZM∣∣∣~RM − ~ri
∣∣∣ +

ZNg∣∣∣~RNg − ~ri
∣∣∣
 (6)

where lower case ~r denote electronic position vectors.

• Electronic-Electronic Potential Energy

V̂ee =

ZM+ZNg∑
i>j

e2

4πε0

1

|~ri − ~rj|
(7)

• Electron Spin Orbit Coupling

V̂SO = ξ(r) ˆ̀· ŝ (8)

where ξ is the spin-orbit coupling function, ˆ̀ is the electron’s orbital angular

momentum, and ŝ is the electron’s spin angular momentum.

The Hamiltonian can be simplified by defining the following combination of terms,

ĤMNg ≡ T̂e + V̂NN + V̂eN + V̂ee (9)
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which leaves the simplified form of the Hamiltonian for the M+Ng interaction as

Ĥ = T̂Nrad
+ T̂Nang + ĤMNg + V̂SO (10)

2.2 The Diabatic Basis

The diabatic basis is a mixed representation consisting of the radial coordinate

and the angular momentum, ∣∣∣∣∣ R J j

Ω ω

〉
(11)

where R is the internuclear separation, J is the total angular momentum, Ω is the

projection of J onto the internuclear axis, j is the electronic angular momentum, and

ω is the projection of j onto the internuclear axis. The 2P3/2 and 2P1/2 alkali atom

energy levels correspond to a total of six eigenstates in this basis. With R omitted

for clarity, the eigenstates are

2P1/2 =⇒



∣∣∣∣∣ J 1/2

1/2 1/2

〉

∣∣∣∣∣ J 1/2

−1/2 −1/2

〉 2P3/2 =⇒



∣∣∣∣∣ J 3/2

3/2 3/2

〉

∣∣∣∣∣ J 3/2

1/2 1/2

〉

∣∣∣∣∣ J 3/2

−1/2 −1/2

〉

∣∣∣∣∣ J 3/2

−3/2 −3/2

〉

(12)
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For the M+Ng system considered here, Ω = ω in each of these eigenstates. This is

because the projection of the orbital nuclear angular momentum onto the internuclear

axis is zero (Ĵ = L̂+ ĵ, Jz = Lz + jz = jz, with Lz = 0).

Since there are six basis vectors, the matrix representation of the Hamiltonian in

this basis will yield a 6 × 6 matrix. Fortunately, this 6 × 6 matrix is approximately

block diagonal with two 3 × 3 blocks [5]. These blocks separate the positive and

negative values of Ω = ω, and only one of these needs to be considered (see [5] for

the full 6× 6 matrix representation). Considering only the three basis vectors having

positive momentum projections, the 3× 3 matrix representations of the terms of the

M+Ng Hamiltonian in Equation 10 are given by

TNrad
= −~2

2µMNg

∣∣∣∣∣ J 3/2

3/2 3/2

〉 ∣∣∣∣∣ J 3/2

1/2 1/2

〉 ∣∣∣∣∣ J 1/2

1/2 1/2

〉




〈
J 3/2

3/2 3/2

∣∣∣∣∣ d2

dR2 0 0

〈
J 3/2

1/2 1/2

∣∣∣∣∣ 0 d2

dR2 0

〈
J 1/2

1/2 1/2

∣∣∣∣∣ 0 0 d2

dR2

(13)
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TNang = −~2
2µMNgR2

∣∣∣∣∣ J 3/2

3/2 3/2

〉 ∣∣∣∣∣ J 3/2

1/2 1/2

〉 ∣∣∣∣∣ J 1/2

1/2 1/2

〉




〈
J 3/2

3/2 3/2

∣∣∣∣∣ J(J + 1)− 3
4

−[3(J − 1
2
)(J + 3

2
)]1/2 0

〈
J 3/2

1/2 1/2

∣∣∣∣∣ −[3(J − 1
2
)(J + 3

2
)]1/2 J(J + 1) + 13

4
0

〈
J 1/2

1/2 1/2

∣∣∣∣∣ 0 0 J(J + 1) + 3
4

(14)

(using the fact that L̂ = Ĵ − ĵ and L̂2 = Ĵ2 + ĵ2 − 2Ĵ · ĵ).

HMNg +VSO =

∣∣∣∣∣ J 3/2

3/2 3/2

〉 ∣∣∣∣∣ J 3/2

1/2 1/2

〉 ∣∣∣∣∣ J 1/2

1/2 1/2

〉




〈
J 3/2

3/2 3/2

∣∣∣∣∣ Π + ξ
2

0 0

〈
J 3/2

1/2 1/2

∣∣∣∣∣ 0 1
3

(2Σ + Π) + ξ
2
−
√

2
3

(Σ− Π)

〈
J 1/2

1/2 1/2

∣∣∣∣∣ 0 −
√

2
3

(Σ− Π) 1
3

(Σ + 2Π)− ξ

(15)
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2.3 The Adiabatic Basis and Potential Energy Surfaces

The adiabatic basis vectors corresponding to the 2P1/2 and 2P3/2 atomic energy

levels are given by

P1/2 =⇒
{ ∣∣∣Π1/2

〉
P3/2 =⇒


∣∣∣Σ1/2

〉
∣∣∣Π3/2

〉 (16)

In this basis, the 3× 3 matrix representation of the electronic M+Ng Hamiltonian is

given by the diagonal matrix

HMNg +VSO =

∣∣∣Π3/2

〉 ∣∣∣Σ1/2

〉 ∣∣∣Π1/2

〉



〈

Π3/2

∣∣∣ Π3/2 0 0〈
Σ1/2

∣∣∣ 0 Σ1/2 0〈
Π1/2

∣∣∣ 0 0 Π1/2

(17)

Because there are no off-diagonal terms in this matrix, the adiabatic electronic M+Ng

Hamiltonian does not contribute to mixing between eigenstates. The components of

this matrix have been previously calculated using a many-body numerical approach

[1] to yield adiabatic electronic potential energy surfaces, shown for RbHe in Figure

2. Note that these are the upper states from the surfaces shown in Figure 1 for a

DPAL.

2.4 Adiabatic-Diabatic Transformation and Diabatic Potential Energy

Surfaces

As stated, the potential energy surfaces have been calculated in the adiabatic basis

[1], but the time-dependent perturbation theory method that will be used requires

9
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Figure 2. Adiabatic potential energy surfaces for RbHe.

the electronic Hamiltonian to be represented in the diabatic basis. What is required

is a unitary adiabatic-diabatic transformation, such that

Hdiabatic = U†HadiabaticU (18)

where U is the unitary adiabatic-diabatic transformation matrix. This transformation

is found in [5] by diagonalizing Hdiabatic to find its eigenvectors, then matching those

eigenvectors to the diagonal elements of Hadiabatic. This gives the elements of Hadiabatic

in terms of the diagonalized elements of Hdiabatic as

Π3/2 = Π + ξ
2

Σ1/2 = 1
4

(
−ξ + 2 (Σ + Π) +

√
9ξ2 + 4ξ (Σ− Π) + 4 (Σ− Π)2

)
Π1/2 = 1

4

(
−ξ + 2 (Σ + Π)−

√
9ξ2 + 4ξ (Σ− Π) + 4 (Σ− Π)2

) (19)

10



These solutions are then inverted to obtain the diabatic electronic Hamiltonian (given

by Equation 15) in terms of the known adiabatic electronic Hamiltonian eigenvalues.

The transformations are

Σ =
2Π1/2−Π3/2+2Σ1/2

3
+ 1

3

√
Π2

1/2 + 2Π1/2Π3/2 − 2Π2
3/2 − 4Π1/2Σ1/2 + 2Π3/2Σ1/2 + Σ2

1/2

Π = 1
6

(
Π1/2 + 4Π3/2 + Σ1/2 −

√
Π2

1/2 + 2Π1/2Π3/2 − 2Π2
3/2 − 4Π1/2Σ1/2 + 2Π3/2Σ1/2 + Σ2

1/2

)
ξ = 1

3

(
−Π1/2 + 2Π3/2 − Σ1/2 +

√
Π2

1/2 + 2Π1/2Π3/2 − 2Π2
3/2 − 4Π1/2Σ1/2 + 2Π3/2Σ1/2 + Σ2

1/2

)
(20)

With this information, the diabatic electronic potential energy surfaces can be

found from the diagonal terms of the diabatic electronic Hamiltonian matrix (Equa-

tion 15). The surfaces for RbHe are shown in Figure 3.
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Figure 4. Classical collision between an alkali Metal atom, M, and a noble gas atom,
Ng. (The inset plot displays the radial coupling function potential for rubidium and
helium).

2.5 Semi-Classical Model for the Probability of Transition for a Single

Atom

In order to simplify the full quantum mechanical calculations of the fine structure

transition rates [5], several approximations are made to the Hamiltonian matrices

in Equations 13, 14, and 15. This is accomplished through the introduction of the

semi-classical, two-atom collision model. In this model, an alkali metal atom and

a noble gas atom are taken to be point particles. Their locations are described by

a two-dimensional Cartesian coordinate system that is centered on the alkali metal

and is stationary in the alkali metal’s rest frame (see Figure 4). The noble gas atom

starts at x = −∞, and travels in a straight line in the positive x direction at a

constant velocity, v. The collision is characterized by an impact parameter b. Due

to rotational symmetry around the x-axis, only one plane needs to be considered,

leaving the rotation to be accounted for through a later integration, and reducing the

12



problem to a two-dimensional problem. The distance between the particles is given

as R =
√
b2 + (vt)2. As R changes, the alkali metal’s electronic energy states are

perturbed in a quantum mechanical interaction through the radial coupling function,

V (R). In this simplified model, the classical motion of the atoms is unaffected by the

interaction.

To be feasible, this model must account for all terms in the Hamiltonian (Equa-

tions 13, 14, and 15). The tracking of these terms as they relate the full quantum

approach to the semi-classical approach is not mathematically rigorous, but is instead

based on reasonableness arguments. Of course, a quantum mechanical process cannot

be fully described in classical terms, but the goal is to distill the system down to its

most important elements to make its implementation more practical and to make its

inner workings more transparent. Ultimately, the justification for any model is de-

termined by its ability to predict experimental results. Following this reasoning, the

classical model replaces the nuclear radial kinetic energy term (Equation 13) through

its linear velocity parameter. It also replaces the diagonal elements of the nuclear

angular kinetic energy term (Equation 14) through the combination of linear veloc-

ity and impact parameter. This leaves the off-diagonal terms of the nuclear angular

Hamiltonian matrix and the electronic Hamiltonian matrix. Next, note that the tran-

sitions of interest are between the
∣∣∣∣∣ J 3/2

1/2 1/2

〉
state, which corresponds to the 2P3/2

atomic energy level, and the
∣∣∣∣∣ J 1/2

1/2 1/2

〉
state, which corresponds to the 2P1/2 atomic

energy level. The mixing of these states is responsible for the establishment of a

population inversion in the 2P1/2 energy level. This means that the Coriolis coupling

within the 2P3/2 energy level, between the
∣∣∣∣∣ J 3/2

3/2 3/2

〉
and

∣∣∣∣∣ J 3/2

1/2 1/2

〉
states, is not of

interest and is therefore neglected. This Coriolis coupling is represented by the off-

diagonal elements of the nuclear angular kinetic energy Hamiltonian (Equation 14),

which can be ignored, now leaving only the electronic Hamiltonian matrix. Without
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the Coriolis coupling, there is no other mixing with the
∣∣∣∣∣ J 3/2

3/2 3/2

〉
state. This allows

the first row and column of the Hamiltonian to be disregarded, which leaves only a

2× 2 matrix that governs fine structure transitions,

HFS =

∣∣∣∣∣ J 3/2

1/2 1/2

〉 ∣∣∣∣∣ J 1/2

1/2 1/2

〉




〈
J 3/2

1/2 1/2

∣∣∣∣∣ 1
3

(2Σ + Π) + ξ
2
−
√

2
3

(Σ− Π)

〈
J 1/2

1/2 1/2

∣∣∣∣∣ −
√

2
3

(Σ− Π) 1
3

(Σ + 2Π)− ξ

(21)

The off-diagonal elements of the fine structure transition matrix, HFS, in Equation

21 are given by

V (R) =

√
2

3
(Σ− Π) (22)

where V (R) is the radial coupling function, which mixes the
∣∣∣∣∣ J 3/2

1/2 1/2

〉
and

∣∣∣∣∣ J 1/2

1/2 1/2

〉

states. A positive V (R) is arbitrarily chosen, since the magnitude of V (R) is the

quantity of interest. The radial coupling surface for RbHe is shown in Figure 5. The

assumption of a straight line trajectory effectively treats the diagonal elements of

HFS as constants and yields time-dependent off-diagonal terms,

HFS(t) =

∣∣∣2P3/2

〉 ∣∣∣2P1/2

〉
 〈

2P3/2

∣∣∣ E3/2 V (R(t))〈
2P1/2

∣∣∣ V (R(t)) E1/2

(23)

where the time dependence enters through R(t) as determined by the straight line

trajectories. The time dependent Hamiltonian in Equation 23 can be used with time-
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Figure 5. The radial function that couples the adiabatic and diabatic potential energy
surfaces for RbHe.

dependent perturbation theory (Section 2.6) to determine the probability of a fine

structure transition during a collision.

2.6 Time-Dependent Perturbation Theory

Paralleling the development of time-independent perturbation theory in [4], sup-

pose there are two stationary state wave functions, ψ1/2, corresponding to the 2P1/2

atomic energy level, and ψ3/2, corresponding to the 2P3/2 atomic energy level. These

could be the two upper states of a DPAL. Considering just these two atomic energy

levels, and a single electron in the 2P3/2 energy level, the full wave function is

Ψ(r, t) = C1/2ψ1/2(r)e−iE1/2t/~ + C3/2ψ3/2(r)e−iE3/2t/~ (24)
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where C1/2 and C3/2 are normalization constants. With the electron starting in the

upper state, the probability of finding the electron in each state is

∣∣C1/2

∣∣2 = 0∣∣C3/2

∣∣2 = 1
(25)

Now, if these are truly stationary states, then this system is of no interest because

transitions between the 2P3/2 and 2P1/2 energy levels are required to establish a pop-

ulation inversion, and without the population inversion there would be no gain in

the laser. So instead consider that C1/2 and C3/2 are functions of time. This cor-

responds to adding a time-dependent perturbation to the original time-independent

Hamiltonian, H0,

H = H0 +H ′(t) (26)

Solving the Schrödinger equation with this Hamiltonian gives

Ċ1/2 = − i
~H
′
1
2
, 3
2

e−i∆tC3/2

Ċ3/2 = − i
~H
′
3
2
, 1
2

e−i∆tC1/2

∆ ≡ E3/2−E1/2

~

(27)

which are exact solutions. To apply the time-dependent perturbation, start with the

zeroth order approximation

C
(0)
1/2(t) = 0

C
(0)
3/2(t) = 1

(28)

which corresponds to the electron remaining in its original state. Next, applying the

first order correction by combining Equations 27 and 28, and solving gives

C
(1)
1/2(t) = − i

~

t∫
0

H ′1
2
, 3
2

(t′)e−i∆t
′
dt′ (29)
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which means that the probability that the electron changed energy levels is

∣∣∣C(1)
1/2(t)

∣∣∣2 =

∣∣∣∣− i
~

t∫
0

H ′1
2
, 3
2

(t′)e−i∆t
′
dt′
∣∣∣∣2 (30)

2.7 Determining Transition Rates and Probabilities

When applied to the classical model, Equation 30 provides the single-atom tran-

sition probability, P0, as

P0(b, v) =

∣∣∣∣∣∣ i~
∞∫

−∞

V (R(b, v, t)) e−i∆tdt

∣∣∣∣∣∣
2

(31)

where the limits have been adjusted to model the noble gas atom approaching from

a distance x = −∞ where V is negligible, interacting with the alkali metal, then

proceeding on to x =∞ where V is negligible again. This equation is the probability

that an electron in a single alkali metal atom will transition between electronic energy

levels during a collision. This equation only accounts for a single collision possessing

a single velocity and a single impact parameter. This probability will be integrated

across velocity and impact parameter, but first some relationships must be described.

The experimental data that the results of this thesis will be compared against

were recorded as collision cross sections, σ(T ), which are functions of temperature

[3]. In a hard sphere collision model, the collision cross sections can be found through

their relationship with the number of collisions, N , in a cylindrical volume,

N = Volume × Density

= (v̄ t σ) × n
(32)

where v̄ is the mean velocity, t is the elapsed time, and n is the number of atoms per

unit volume. Defining a rate coefficient, K, as the number of collisions per unit of
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time, per particle number density gives

K = N
t n

= v̄ σ
(33)

The collision cross section can now be found through the relation

σ = K
v̄

(34)

The total probability is given by the ratio

P = σ
σQD

= K
σQD v̄

(35)

where σQD is the quantum defect collision cross section, defined as [3]

σQD = π (〈r〉+ rRg)
2 (36)

where 〈r〉 is the expectation value of the electron position, and rRg is the effective

radius of the atom.

To find the rate coefficient, K, the probability for the transition of a single atom

is first multiplied by velocity and then averaged over velocity using the Maxwell-

Boltzmann distribution for an ideal gas,

K0 = 4π

(
µ

2πkBT

)3/2
∞∫

0

v3e

(
− µv2

2kBT

)
P0(b, v) dv (37)

where µ is the reduced mass of the M+Ng pair, kB is the Boltzmann constant, and T

is the temperature. To account for all impact parameters, b, an integration across b

is performed, where a factor of 2π is included to account for the cylindrical symmetry
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of the collision geometry

K1 = 2π

∞∫
0

b K0 db (38)

The final rate equation becomes

K = 2π

∞∫
0

b 4π

(
µ

2πkBT

)3/2
∞∫

0

v3e

(
− µv2

2kBT

)∣∣∣∣∣∣ i~
∞∫

−∞

e(−i∆t)V (R(b, v, t))dt

∣∣∣∣∣∣
2

dv db (39)

The rate equation has units of length cubed over time, and represents the probability

of transition per unit time per particle number density.

2.8 Approximations of the Radial Coupling Function, V (R)

Besides using the radial coupling function V (R) from Equation 22 directly, two

approximate forms of the radial coupling function V (R) were used in this thesis. The

quantum mechanically calculated V (R) from Equation 22 will now be referred to as

VQM(R). The first approximation, VRG(R), is a rectangle function with a Gaussian

onset/offset as shown in Figure 6 and defined as

VRG(R) =


V0 if R ≤ L

V0 exp
[
− (R−L)2

2W 2

]
if R > L

(40)

by the three parameters of peak potential V0, interaction length L, and onset width

W . This “rectangular-Gaussian” approximation model was adjusted to be a close

match to the radial coupling potential VQM(R). An attempt was made to find an

analytic form of the rate equation (Section 2.10) using this VRG(R) approximation,

but it was unsuccessful. This led to the second form of approximation, VRG(t), which
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Figure 6. A slice of the rectangular Gaussian approximation, VRG(R), to the coupling
potential, VQM (R). The potential and approximation are shown for RbHe, with impact
parameter b = 0.

is shown in Figure 7 and is defined as

VRG(t) =


V0 exp

[
− (t+τ)2

2s2

]
if t < −τ

V0 if −τ ≤ t ≤ τ

V0 exp
[
− (t−τ)2

2s2

]
if t > τ

(41)

It is found by the transformation of the explicit independent variable in VRG(R) from

R to t through the relationship,

R2(t) = b2 + v2t2 ⇒ t = ±
[
(R2 − b2)/v2

]1/2
(42)

then defining τ to be the points where R = L

τ = ±
[
(L2 − b2)/v2

]1/2
(43)
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Figure 7. A slice of the rectangular Gaussian approximation, VRG(t), to the coupling
potential, VQM (R). The potential and approximation are shown for RbHe, with v =
v̄ and impact parameter b = 0. VQM (R) is transformed from spatial coordinates to

temporal coordinates according to the relationship R =
√
b2 + (vt)2 = v t.

This has the consequence of limiting τ to values where b < L, which introduces an

unknown approximation by eliminating grazing collisions for which b > L. The other

main difference between V (R) and V (t) lies in the conversion of W to s, where W

and s scale the widths of the Gaussian curves. The factor s is defined as

s =
W

v̄
(44)

where the mean velocity, v̄, is used rather than v in order to keep this factor constant

to permit an analytic integration of the rate equation, K. In temporal coordinates

(which the integral containing V is in) W is effectively a function of velocity, W (v),

while s is not. As a consequence, VRG(R) maintains its similarity to VQM(R), while

VRG(t) becomes compressed or extended as the relative velocity of the atoms varies

(see Figures 8 and 9).
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Figure 8. A slice of the rectangular Gaussian approximation, VRG(t), to the coupling
potential, VQM (R). The potential and approximation are shown for RbHe, with v = 1

2 v̄
and impact parameter b = 0. Notice that the scaling is maintained for everything
except s = W

v̄ . VQM (R) is transformed from spatial coordinates to temporal coordinates

according to the relationship R =
√
b2 + (vt)2 = v t.
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Figure 9. A slice of the rectangular Gaussian approximation, VRG(t), to the coupling
potential, VQM (R). The potential and approximation are shown for RbHe, with v = 2v̄
and impact parameter b = 0. Notice that the scaling is maintained for everything
except s = W
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2.9 Adiabaticity

Adiabaticity can be defined in different ways, depending on the context, so it

is important to be clear what is meant by the term. In this thesis it is defined as

the ratio of two characteristic time scales, τcollision and τspin-orbit. As it applies to the

collision between two atoms, adiabaticity, α, is defined here as

α = Duration of Collision
Spin-Orbit Time Scale

= τcollision
τspin-orbit

(45)

The duration of a collision is

τcollision = 2L
v̄

(46)

where L is the interaction length defined in Section 2.5 (with a factor of two, because

it is defined as a radial interaction length), and v̄ is the mean relative velocity of the

atoms at a given temperature. The spin-orbit time scale is given by

τspin-orbit = 2π
∆

(47)

where ∆ is defined in Equation 27 as the angular frequency associated with the 2P3/2

to 2P1/2 energy level transition. Combining these two definitions provides the final

form of the adiabaticity equation

α =
L

v̄

∆

π
(48)

The integrand from the equation for the probability of a transition in a single atom,

Equation 31, is given by

V (R(b, v, t)) e−i∆t (49)
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and is plotted in Figures 10 and 11 to illustrate the relationships between the two

characteristic time scales for RbHe at various factors of mean relative velocity for

various temperatures.
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Figure 10. Adiabaticity range for a collision between rubidium and helium. Tempera-
tures range from 300K to 900K. Velocities range from 0.59 v̄ to 4.0 v̄ (where v̄ is the
average relative thermal velocity). The plot maintains a consistent scaling across time.

2.10 Analytic Approximation of Transition Probability

An analytic approximation for the total fine structure transition probability (Equa-

tion 35) has previously been derived [8], and the results of this derivation are used in

this thesis. A short overview of this analytic approximation is given here. Combining
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Figure 11. Adiabaticity range for a collision between rubidium and helium. Temper-
atures range from 300K to 900K. Velocities range from 0.59 v̄ to 4.0 v̄ (where v̄ is
the average relative thermal velocity). Note that the scaling of the axes varies (the
frequency of the oscillation is constant).
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the single-collision transition probability, Equation 31, and the definition of VRG(t)

in Equation 41 gives

P0(b, v) =

∣∣∣∣ i~ ∞∫
−∞

V (t) e−i∆tdt

∣∣∣∣2
=

V 2
0

~2

∣∣∣∣∣ −τ∫−∞ dt exp
{
− (t+τ)2

2s2
− i∆t

}
+

τ∫
−τ
dt exp {−i∆t}

+
∞∫
τ

dt exp
{
− (t−τ)2

2s2
− i∆t

} ∣∣∣∣∣
2

(50)

After defining the two variables A and B,

A = π1/2
(

∆s√
2

)
exp

(
−∆2s2

2

)
B = 1− A erfi

(
∆s√

2

) (51)

and integrating, the expression can be written as,

P0(b, v) =
4V 2

0

~2∆2

{
A2cos2(∆τ) + ABcos(∆τ)sin(∆τ) +B2sin2(∆τ)

}
(52)

After summing over the impact parameter and taking the thermal average, as done in

Section 2.7, various mathematical manipulations and approximations are applied [8]

to arrive at an analytic solution for the rate coefficient, K, and the final probability

is found to be

P = K
σQD v̄

=
(

1
32π2~2

) ( V 2
0 L

′4

σQD v̄2

)(
v̄
fL′

)4
[
16π (A2 +B2)

(
fL′

V̄

)2

+ 2π1/2ABexp
{
−4π

25

(
fL′

v̄

)}
sin
{
−4π1/2

21/4

(
fL′

v̄

)}] (53)

where
(
fL′

v̄

)
is the adiabaticity, using L′ = 2L and f = ∆

2π
.
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III. Procedure and Numerical Methods

3.1 Numerical Systems

For any numerical routine, it is critically important to consider the numerical

limitations of the computational system being used. To begin the discussion, some

terminology must be defined. Floating point numbers are represented by the combi-

nation of the components,

S ×M ×Be−E (54)

where S is the sign bit, M is the mantissa, B is the base, e is the exponent, and E is

the bias. Being a finite system, each of these components has a set number of digits

allocated to its representation. As a simple, concrete example to help visualize some

of the consequences of this representation, assume that we have a base 10 system with

a three digit mantissa and a two digit exponent. This allows the mantissa to represent

any number from 0 to 999, and allows the exponent to represent any number from 0

to 99. Adding a bias of 49 to the exponent shifts its range to the values -49 through

50. A number represented in this system would have the form ±000 × 10±00. From

this example, it becomes clear how the number of digits available to describe each

floating point number limit the numerical precision and the range of the system.

The relative numerical precision of the system (unscaled by the exponent) is re-

lated to the machine epsilon, εm, which is defined as the smallest number that makes

1 + εm 6= 1 true. It is easy to see that εm = 0.01 in this system, because this value of

εm is the smallest number that makes the following true

1 + εm 6= 1

1 + 0.01 6= 1

(100× 10−02) + (001× 10−02) 6= (100× 10−02)

(55)
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It is important to notice that the machine epsilon, which is determined by the

mantissa, is not the same as the smallest number that the system can represent, which

is determined by the exponent and bias. In the example presented here, εm = 10−02,

but the system can represent numbers as small as 10−49. The range of the system is

determined by the number of digits in the exponent, which translates to the number

of orders of magnitude of the base that the floating point representation can be scaled

by. See Table 1 for a list of common system values used by most modern computers

[2].

Table 1. Standard values used to represent floating point precision and double precision
numbers in modern computers (also see Equation 54). ∗The value of the mantissa can
effectively be more than the storage space allocated, due to normalization (see [2] for
more information).

Float Double
Base 2 2

Mantissa Number of Digits 23(+1)∗ 52(+1)∗

Exponent Number of Digits 8 11
εm 1.19× 10−7 2.22× 10−16

Minimum Number 1.18× 10−38 2.23× 10−308

Maximum Number 3.40× 1038 1.80× 10308

Rounding errors due to machine epsilon limitations can sometimes be minimized

by changing the order that calculations are done, to minimize the addition or sub-

traction of numbers with highly disparate orders of magnitude. Also, to avoid errors

that are caused by the use of values that approach the machine’s minimum or maxi-

mum representable values, appropriate systems of units can be chosen. Here, atomic

units were selected for that reason, but this may not always be necessary for modern

computer systems, as long as double precision is used.

When performing a very large number of calculations, accumulation of machine

error can begin to be a problem. Assuming that the error is not biased in any
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particular direction, machine epsilon will accumulate in a random walk pattern, which

puts the error on the order of
√
Nεm, whereN is the number of calculations performed.

3.2 Selection of Method of Quadrature

Ideally, the number of calculations required in a numerical routine would be min-

imized. This both reduces the computation time and reduces the chance for the

accumulation of rounding error. Due to the very large number of iterations required

to solve the equations in this thesis, it was very important to find a quickly converging

numerical quadrature (integration) routine. An algorithm using only the trapezoidal

rule is very robust but can require many computations to achieve the required accu-

racy [7]. Due to this large number of computations, the accumulated machine error

can begin to be significant. The upper plots in Figures 12 and 13 show the expected

convergence of a trapezoidal rule routine [7], along with its actual convergence for a

few sample cosine integrals. Figure 12 uses single floating point precision, and Figure

13 uses double floating point precision. Also included in the figures is the approximate

machine accuracy and the theoretical accumulated machine error for floating point

numbers. The figures also show the expected convergence rate of Romberg integration

algorithms [7], which are described below. Note that the error accumulation shown

in the figures is for a single integral. If performing calculations for a three-variable

integral, the number of points required is approximately the cube of the number of

points required for each single-variable integral, assuming similar functions for each

variable.

Romberg integration routines build upon the strength of trapezoidal rule algo-

rithms but converge much more quickly. The Romberg method combines multiple

iterations of the trapezoidal rule algorithm. With each iteration of the trapezoidal

rule algorithm, the integrand is calculated at an increasing number of points. The
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Figure 12. Single-precision convergence for numerical integration using the trapezoidal
rule (top) and the Romberg method (bottom). The dashed lines show the actual error
in a few sample cosine integrals, while the solid lines show theoretical error. The
number of points where the integrand is evaluated, N, is related to the number of
iterations, j, by the formula N = 2j−1 + 1. The black dots mark the points where the
integrand is calculated for at least two points per cycle. Notice that both routines
crash around j = 25 iterations. This is likely related to the fact that this is where the
spacing between points has the same order of magnitude as εm.
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Figure 13. Double-precision convergence for numerical integration using the trapezoidal
rule (top) and the Romberg method (bottom). The dashed lines show the actual error
in a few sample cosine integrals, while the solid lines show theoretical error. The
number of points where the integrand is evaluated, N, is related to the number of
iterations, j, by the formula N = 2j−1 + 1. The black dots mark the points where the
integrand is calculated for at least two points per cycle.
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Romberg method uses the results of the trapezoidal rule iterations in a weighted

extrapolation to determine a more accurate solution. The lower plots of Figures 12

and 13 show the actual convergence of a Romberg routine. This Romberg routine

uses the same cosine integrals as used by the trapezoidal rule algorithm in the upper

plots. To aid comparison, the lower plots also show the same theoretical information

as the upper plots. Notice that, by converging faster, less accumulated machine error

accrues, and the Romberg routine is able to achieve a couple of orders of magnitude of

higher precision as compared to the trapezoidal rule, before machine limits dominate

the result. This effect is most pronounced in the plots with double precision.

Numerical Recipes in C [7] includes an iterative, adaptive Romberg integration

routine that the code used in this thesis was based on. For the first iteration, it

calculates the value of the integrand at the limits of integration. For the second

iteration, it finds the midpoint between the limits of integration, and calculates the

integrand there. It continues for subsequent iterations, finding the midpoints between

each pair of adjacent points from the previous iteration, and calculating the integrand

at each of these midpoints. After each iteration it sums the results, and multiplies by

the step size, combining the new result with the result from the previous iteration. In

this way, the calculations at points from previous iterations are not wasted, but are

instead combined with calculations from new iterations so that the solution can be

refined without having to re-accomplish previous work. The total number of points,

N, after j iterations is

Nj = 2j−1 + 1 (56)

So far, this just describes an iterative trapezoidal rule algorithm. The Romberg

method expands upon and refines the trapezoidal rule algorithm by applying Richard-

son extrapolation (also known as Richardson’s deferred approach to the limit). Richard-

son extrapolation combines increasingly precise approximations of the integral in a
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way that cancels low order error terms [2] [7]. As long as the error estimate is small,

then this increased order of the error estimate translates to an increase in convergence

rate. Richardson extrapolation is based on the formula

I ij =
4iI i−1

j − I i−1
j−1

4i − 1
(57)

which forms the table

I0
1

I0
2 I1

2

I0
3 I1

3 I2
3

I0
4 I1

4 I2
4 I3

4

I0
5 I1

5 I2
5 I3

5 I4
5

...
...

...
...

...
. . .

(58)

The Romberg method is seeded by the I i=0
j , which are the results of successive itera-

tions of the trapezoidal rule algorithm,

I i=0
j =

b− a
2Nj

Nj∑
k=1

(f(xk+1) + f(xk)) ≈ I =

b∫
a

f(x) dx (59)

with each increasing value of i being the next iteration of the Richardson extrapola-

tion. Accuracy of values in the table increases towards the bottom and to the right.

When the difference between I imax−1
jmax

and I imaxjmax
is smaller than the convergence error

condition, then the process ends and I imaxjmax
is given as the solution to the integral. For

example, from the table above,

if
(∣∣I3

5 − I4
5

∣∣ < Convergence Error Condition
)

, then set I = I4
5 (60)
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where the (relative) convergence error condition is, for example,

Convergence Error Condition =
∣∣I4

5

∣∣× 10−6 (61)

Due to the oscillatory nature of the integrals used in this thesis, another very

important convergence condition was imposed in addition to the relative error re-

quirement. The convergence error check was only performed after the number of

total points equaled at least two points per cycle of the oscillating integrand. The

requirement for having at least two points of integration per cycle of oscillation is

based on the Nyquist sampling theorem from digital signal processing, which states

that a continuous wave cannot be sampled at a discrete set of points unless the sample

rate is at least twice the rate of the sampled signal [6]. To visualize this requirement,

the large dots in Figures 12 and 13 mark the points where this condition is satisfied.

Before adding this condition to the code, convergence tests required a much more

strict relative error condition, which in turn required much more computation time.

Furthermore, even with the stricter error conditions, convergence was very erratic and

had to be carefully manually verified. With this “Nyquist condition” included, the

code was much more robust, and convergence error conditions could be chosen based

on finding a balance between speed and precision. The value chosen for the relative

error to end the integration loops was normally set to 10−6, but due to some very

high oscillations requiring many more integration points and in turn requiring much

more computation time, chosen values ranged from 10−4 to 10−6. As will be discussed

in more detail, there were many considerations and optimizations implemented that

took the computation time down to minutes or hours, from what was originally ap-

proximated to have possibly taken months on a standard desktop computer. From

what has already been presented, it can be seen that having a very large number
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of calculations would build up accumulated error that could possibly dominate the

results, bringing any conclusions into question.

Notice that the number of points (see Equation 56) quickly increases as the number

of iterations is increased. The number of points where the integrand is calculated

begins with 2 points in the first iteration, reaches 17 points after 5 iterations, only 513

points by 10 iterations, then 16,385 after 15 iterations, and a cumbersome 1,048,577

points by 21 iterations. Due to time constraints, the code used in this thesis was

designed to report the inability to converge if convergence was not achieved by 25

iterations, or 16,777,217 points. When convergence was not reached by 25 iterations,

the convergence error condition was relaxed, starting from a relative error of 10−6.

All atomic species were able to converge with at least a 10−4 relative error bound.

3.3 Multivariable Quadrature - Optimization and Numerical Integration

of the Rate Equation

The multidimensional integral for the rate is given by Equation 39,

K = 2π

∞∫
0

b 4π

(
µ

2πkBT

)3/2
∞∫

0

v3e

(
− µv2

2kBT

)∣∣∣∣∣∣ i~
∞∫

−∞

e(−i∆t)V (R(b, v, t))dt

∣∣∣∣∣∣
2

dv db

This equation is challenging to integrate for three primary reasons; (1) because the

integrand may extend across many periods of oscillation, (2) because it is a mul-

tivariable integral with three variables of integration, and (3) because some of the

integration limits extend to infinity. The techniques described below were used in

combination with fairly standard C-programming optimization techniques.

The problem of integrating across many cycles of oscillation was solved by using

the adaptive Romberg integration routine along with a sufficiently large number of

points of evaluation of the integrand. The fact that the Romberg method converges
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relatively quickly, combined with the fact that the routine is adaptive, meaning that

only the minimum number of points required for convergence are used, is very impor-

tant. There are other methods of numerical quadrature that are designed specifically

for highly oscillatory functions, and a short detour was made during this research

to see if they could be feasible here. Unfortunately, it was not clear if the methods

found could handle multivariable integration and/or infinite limits. Due to time con-

straints and the excessive time required to learn, code, and test the various alternate

methods, the search was abandoned before a definitive answer was found. Alternate

methods may have provided faster computation times, but they were ultimately un-

necessary. The Romberg method is very robust and stable, and works very well for

the calculations performed for this thesis, as long as certain considerations are made,

as described throughout this section.

Splitting Multidimensional Integral Into Nested Single-Variable Inte-

grals.

To numerically integrate a multivariable integral, the integral must first be broken

up into separate, nested integrals. It is already clear that there is a difficult balance

to be made between making sure that the integrand is calculated at enough points

to get an accurate and precise solution, and using so many points that the compu-

tation time becomes excessive or the machine error begins to dominate. One way to

minimize the number of computations required is by carefully choosing the way that

the multivariable integral, Equation 39, is separated into single-variable integrals.

Equation 39 was separated as follows:

I3(b, v) =

∣∣∣∣ i~
∫ ∞
−∞

e(−i∆t)V (R(b, v, t))dt

∣∣∣∣2 (62)
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is the innermost integral, representing the probability of transition for a single velocity,

v, and for a single impact parameter, b. The middle integral can be taken to be

I2(v) = 2π

∫ ∞
0

b [I3(b, v)] db (63)

which is the integration across all impact parameters and polar angles. This leaves

I1 = 4π

(
µ

2πkBT

)
3/2

∫ ∞
0

v3e

(
− µv2

2kBT

)
[I2(v)] dv (64)

as the outermost integral, which averages the product of the velocity and probability

across the Maxwell Boltzmann distribution.

The integrand in I1, being in the outermost integral, gets evaluated 2j1−1 +1 times

(see Equation 56). The integrand in I2 must be evaluated 2j2−1 + 1 times for each

evaluation of I1, or (2j2−1 + 1) (2j1−1 + 1). The number of evaluations of I3 is then

(2j3−1 + 1) (2j2−1 + 1) (2j1−1 + 1). The integral across t contains functions of each

of the integration variables within an absolute square, so it must be the innermost

integral, I3, and be evaluated first. The integrals over b and v can be easily separated,

and are therefore free to change order of integration. Since the innermost of these

two integrals will be calculated the most number of times, it should require the least

computation time. The integration across v is much more complex because of the

Maxwell-Boltzmann distribution, which led to the assumption that it would require

more computation time to evaluate, and should therefore be the outer integral, I1.

This leaves the integration across b as the middle integral, I2.

Simplifying the Integrals.

The next step in preparing the integrals for numerical integration was dividing

integral I3 into trigonometric functions, by applying Euler’s Formula, eiθ = cos(θ) +
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isin(θ), then applying some algebraic and trigonometric relations to get,

I3(b, v) =
1

~2

∣∣∣∣i ∫ ∞
−∞

cos(∆t)V (R(b, v, t))dt+

∫ ∞
−∞

sin(∆t)V (R(b, v, t))dt

∣∣∣∣2 (65)

which, after more algebra, becomes

I3(b, v) =
1

~2

[∫ ∞
−∞

cos(∆t)V (R(b, v, t))dt

]
2 +

1

~2

[∫ ∞
−∞

sin(∆t)V (R(b, v, t))dt

]2

(66)

The equations can be further simplified and optimized by combining constants.

Define:

C3 = 1
~2

C2 = 2π

C1a = 4π
(

µ
2πkBT

)3/2

C1b = µ
2kBT

(67)

I3(b, v) = C3

[∫∞
−∞ cos(∆t) V (R(b, v, t))dt

]
2

+ C3

[∫∞
−∞ sin(∆t) V (R(b, v, t))dt

]2 (68)

Note that if V (R(b, v, t)) is even, then
∫∞
−∞ sin(∆t) V (R(b, v, t))dt is an odd func-

tion being integrated over a symmetric interval, so the integral goes to zero, simpli-

fying and optimizing the rate equation even further. All of the forms of V used in

this thesis were even, so the sine term was not used.

I2(v) = C2

∫ ∞
0

b[I3(b, v)]db (69)

I1 = C1a

∫ ∞
0

v3e(−C1b v
2)[I2(v)]dv (70)

and the full integral, with C4 = C1a C2 C3 becomes
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K = C4

∫ ∞
0

v3e(−C1b v
2)
∫ ∞

0

b

(∫ ∞
−∞

cos(∆t) V (R(b, v, t))dt

)2

db dv (71)

3.4 Determining the Limits of Integration

Possibly the most difficult, but most important, optimization technique was the

determination of suitable limits of integration. It relies on finding the values of the

integration variables, beyond which no meaningful contribution was made to the final

result. It should be pointed out that there are methods of dealing with infinite limits

that involve a change of variable such as x → 1/x, but these methods cause the

oscillations of the integral to steadily increase towards infinite frequencies, so these

methods are not feasible here. There are three sets of integration limits to consider in

the rate equation (Equation 39), for a total of six limits. Four of these limits extend

to infinity, but fortunately the integrands go to zero fairly rapidly.

For the integration across time, both limits go to infinity, but the integrand is

scaled by the radial coupling function, V (R(t)), which goes to zero as t→ ±∞. The

non-negligible range of these limits was found using the formula xmax = Rmax =

L + nW , where n is an integer, and the impact parameter b = 0 (b, x, R, L, and W

are described in sections 2.5 and 2.8). Through trial and error, values of n ranging

from 5 to 7 were found to give relative integration errors ranging on the order of 10−6

to 10−9. The limits for t were then found using tlimit = ±xmax
v

. In addition, since

the integration across time was of an even function across a symmetric interval, the

limits were adjusted to run from −tmax to zero, and the result was multiplied by two.

At first look, the required limits on b appear to be similar to the limits on x, but

this is not necessarily the case. The rate that V (R) tapers off turns out to have a

very large effect on the time integral, and any discontinuities from ending t = x/v

too early have a significant impact. The range of b is not as significant because the
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integral quickly becomes negligible past b = L (normally). The adiabaticity and

relative sizes of L and W turn out to have a significant effect on the required b range,

so care must be taken in determining the limits, especially when scaling L and W

(Section 5.3). The limit bmax was set by the formula bmax = L+mW , where m is some

integer. The limits were verified by inspection, using plots similar to Figure 14 which

show the probability amplitude (top) and scaled absolute square of the probability

amplitude (bottom) as a function of b, for a sample of evenly spaced points across

v. The verification by inspection consisted of making sure that the contribution to

the total probability appeared to become insignificant, well before the limits were

reached. This method was also verified with a subset of tests where the limits were

extended significantly, and the result was compared to results with the original limits.

The velocity limits are the most complicated, and choosing them correctly is

extremely important since they have a very large impact on computation time, due

to their relationship to the number of oscillations in the integrand. The t limits go to

infinity as v goes to its original lower limit of zero, since tlimit = −xmax
v

. This means

that, as v decreases, the number of oscillations, and in turn the number of integration

points required, increases quickly. The upper limit on v is important, but not as

critical. These limits were found by solving for the values of v, where v multiplied

by the Maxwell-Boltzmann distribution dropped to 1% of its maximum value. These

values were found to be

vmin = χminv̄

vmax = χmaxv̄
(72)

where v̄ is the mean velocity, and the χ are constants, invariant with respect to

temperature or atomic species. The fact that the χ were constants greatly simplified

calculation of these limits for different temperatures and atomic collision partners.

The integration limits for v were verified by inspection similarly to the b limits,
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see Figure 15 for example. Due to the strong effect of v on the time integral (or

similarly, the effect of the single-collision adiabaticity), the limits of integration over

v were found to not be as easily described with the Maxwell-Boltzmann distribution

as originally expected, and the χ values had to be adjusted accordingly. Velocity

limits were normally set to vmin = 0.1v̄ and vmax = 4.0v̄. In hindsight, due to

the intricate interplay of all of the variables involved, it may have been worthwhile to

take the time to implement adaptive integration limits, where the limits automatically

increased until no additional significant change in the final solution resulted.

3.5 Calculations Using VRG(t) and the Analytic Form of the Rate Equation

Even though performing calculations using the analytic form of the rate equa-

tion that was introduced in Section 2.10 is much faster and easier than performing

Romberg integration on the multivariable integral of Equation 39, implementation of

the analytic approximation is not completely trivial. This is because A in Equation

51 approaches zero, and the imaginary error function in B approaches infinity, as the

quantity ∆s increases. Although the product of these two factors is a finite number,

these zeros and infinities quickly extend beyond the limits of double precision float-

ing point numbers. Due to this fact, standard numerical software such as Matlab is

unable to perform calculations for all of the atomic elements looked at in this thesis.

Fortunately, Mathematica is able to extend beyond the limits of double floating point

precision, and can perform the required calculations.

3.6 Special Considerations for Integration When Using VQM(R)

When using VQM(R) (see Section 2.8 for description) as the radial coupling func-

tion in the rate integral, special considerations had to be made. The goal was to

use VQM(R) with as little modification as possible, but the prior calculations of the
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atomic potential energy surfaces only existed for R > 3 [au] (see Figure 16). To over-

come this difficulty, the choice was made to introduce a turning point in the noble gas

atom’s trajectory where the atom’s kinetic energy was equal to the potential energy

of the adiabatic potential energy surface. That raised the question of which surface

should be used, since the atoms are in a linear combination of different states. The

choice was made to use an average of the BΣ1/2 and Π1/2 energy levels, which had the

benefit of also resembling the ground state energy level, XΣ1/2. Some of these surfaces

had binding regions and therefore needed to be modified to make R a single-valued

function of energy. The integration code used a lookup table to find the two nearest

values of R and potential energy, then performed a linear interpolation to match the

given value of kinetic energy to the turning point.

The phase of the probability amplitude in Equation 31 was set to zero at the

point (time) of impact, and there was no phase discontinuity allowed throughout the

duration of the interaction. This allowed the integrand in Equation 31 to be easily

split into pure sine and cosine terms as before, simplifying the problem. Note that

any constant phase offset applied to the oscillatory term of Equation 31 leaves the

equation unchanged after taking the absolute square.

P ′0(b, v) =

∣∣∣∣ i~ ∞∫
−∞

V (R(b, v, t)) e−i(∆t+φ)dt

∣∣∣∣2
=

∣∣∣∣ i~ ∞∫
−∞

V (R(b, v, t)) e−i∆te−iφdt

∣∣∣∣2
=

∣∣∣∣e−iφ i~ ∞∫
−∞

V (R(b, v, t)) e−i∆tdt

∣∣∣∣2
=

∣∣∣∣ i~ ∞∫
−∞

V (R(b, v, t)) e−i∆tdt

∣∣∣∣2
= P0(b, v)

(73)
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IV. Results

4.1 Results Overview

Table 2 summarizes the types of calculations performed in this thesis, as well as

the collisions pairs for which calculations were completed. The table also summarizes

which data is compiled from other sources.

Table 2. Summary of calculations completed and data compiled. *Data from full quan-
tum mechanical calculations covers temperatures up to approximately 400K. **Potas-
sium experimental data inconsistent. ***Data not available.

K
H

e

K
N

e

K
A

r

R
b
H

e

R
b
N

e

R
b
A

r

C
sH

e

C
sN

e

C
sA

r

Analytic Integration, VRG(t) X X X X X X X X X
Numeric Integration, VRG(t) X X X X X X X X X
Numeric Integration, VRG(R) X X X X X X X X X

Numeric Integration, VRG(R) Scaled V0 X X X X X X X X X
Numeric Integration, VRG(R) Scaled L X X X X X X X X X
Numeric Integration, VRG(R) Scaled W X X X X X X X X X

Numeric Integration, VQM(R) X X X X X X X X X
Full Quantum Calculation∗ [5] X X ∗∗∗ X X X X X X

Experimental Data [3] X∗∗ X∗∗ X∗∗ X X X X X ∗∗∗

4.2 Constants and Approximation Parameters

Table 3 lists the values of the various constants and approximations for all M+Ng

pairs used in this thesis. Plots of the quantum mechanical coupling functions,

VQM(R), along with the approximate coupling functions, VRG(R), for all M+Ng pairs

are shown in Figure 16.
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Table 3. Values used for atomic data constants and approximations. *CsAr collision
cross section is estimated.

M+Ng ∆ Reduced Collision Cross L W V0

Pair [rad/a.u. time] Mass, µ Section, σQD
KHe 2.63E-04 6.62E+03 285.3 4.7 2.5 0.0057
KNe 2.63E-04 2.43E+04 301.4 5.15 2.5 0.0034
KAr 2.63E-04 3.60E+04 342.1 6 2.5 0.0038

RbHe 1.08E-03 6.97E+03 306.4 5.35 2.5 0.0043
RbNe 1.08E-03 2.98E+04 323.2 5.7 2.5 0.00273
RbAr 1.08E-03 4.96E+04 364.2 6.6 2.5 0.003
CsHe 2.52E-03 7.08E+03 338.2 6.4 2.5 0.0026
CsNe 2.52E-03 3.19E+04 355.7 6.6 2.5 0.0018
CsAr 2.52E-03 5.60E+04 396∗ 7.6 2.5 0.0019

4.3 Comparison of Numerically Integrated VRG(t) and Analytic VRG(t)

The results of the numerically integrated VRG(t) are compared with the results of

calculations using the analytic integration of VRG(t) (see Section 2.10) in Figures 17,

18, and 19. This comparison helps provide validation for the code, as well as for the

approximations made to arrive at the final analytic form. The comparison is a near

perfect match for the rubidium and cesium pairs, but the results for the potassium

pairs differ slightly between the analytic and numeric methods. The reason for this

difference is likely related to a factor,

Xmax =
∆2L2µ

2kBT
(74)

that was introduced in [8] to simplify the analytic calculations. Xmax was used to

approximate a Meier G function in the analytic solution. This approximation is ex-

pected to hold for values of approximately Xmax > 30, which holds for Rb and Cs, but

not necessarily for K, see Table 4. Secondly, hypergeometric functions were approx-

imated with a sin term multiplied by a decaying exponential. This approximation

becomes much more accurate for values of approximately Xmax > 100.
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Table 4. Values of approximation parameter Xmax for various M+Ng pairs at 300K
and at 900K. Data in this thesis was calculated for temperatures ranging from 300K
(higher adiabaticity) to 900K (lower adiabaticity).

M+Ng Pair ∆ [au] L [au] µ [au] Xmax (300K) Xmax (900K)
KHe 2.63E-04 4.70 6.62E+03 5.32 1.77
KNe 2.63E-04 5.15 2.43E+04 23.4 7.81
KAr 2.63E-04 6.00 3.60E+04 47.2 15.70

RbHe 1.08E-03 5.35 6.97E+03 123 41.0
RbNe 1.08E-03 5.70 2.98E+04 596 199
RbAr 1.08E-03 6.60 4.96E+04 1330 444
CsHe 2.52E-03 6.40 7.08E+03 973 324
CsNe 2.52E-03 6.60 3.19E+04 4670 1560
CsAr 2.52E-03 7.60 5.60E+04 10800 3620
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Figure 17. Ln(Probability) vs Adiabaticity for KHe, KNe, and KAr. Analytic vs.
numeric integration of VRG(t).
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Figure 18. Ln(Probability) vs Adiabaticity for RbHe, RbNe, and RbAr. Analytic vs.
numeric integration of VRG(t).
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Figure 19. Ln(Probability) vs Adiabaticity for CsHe, CsNe, and CsAr. Analytic vs.
numeric integration of VRG(t).
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4.4 Comparison of Numerically Integrated VRG(t) and Numerically Inte-

grated VRG(R)

The results of the numerically integrated VRG(t) are compared with the results of

the numerically integrated VRG(R) in Figures 20, 21, and 22. This comparison helps

determine the effects of approximating the Gaussian width parameter s as W/v̄. It

also helps determine the effect of limiting the impact parameter range to values of

b ≤ L. The effect of integration beyond b = L likely had little significance, based on

observations of plots used to verify the chosen integration limits (similar to Figure 14,

discussed in Section 3.4). Varying the width of the Gaussian does have a significant

impact, and using a sort of thermal average width by using v̄ appears to be a good

first choice. Although using v̄ does not fully account for the required transformation

to go from VRG(R) to VRG(t), the shapes of the curves in the Ln(P ) vs. Adiabaticity

plots seem to remain intact after the transformation. The v̄ scaling can easily be

adjusted by a constant scale factor (e.g. 1.5v̄, etc.) to make the numerical results

match experiment or to make VRG(t) match VRG(R) (see Section 5.3).

4.5 Comparison of Numerically Integrated Rectangular-Gaussian VRG(R)

and Numerically Integrated Quantum Mechanical VQM(R)

The results of the numerically integrated VRG(R) are compared with the results

of the numerically integrated VQM(R) in Figures 23, 24, and 25. These plots raise

what is possibly the biggest question that stemmed from the results of this thesis.

That question is, why did the radial coupling surfaces that are the most likely to be

the most correct produce the highest offset error? Unfortunately, the direct effects of

replacing the radial coupling functions with a square Gaussian approximation are not

clear here, due to the required energy conservation condition in the use of VQM(R)

(see Section 3.6). It is possible to impose the energy conservation condition while us-
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Figure 20. Ln(Probability) vs Adiabaticity for KHe, KNe, and KAr. Numeric integra-
tion of VRG(t) vs. numeric integration of VRG(R).
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integration of VRG(t) vs. numeric integration of VRG(R).
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Figure 22. Ln(Probability) vs Adiabaticity for CsHe, CsNe, and CsAr. Numeric inte-
gration of VRG(t) vs. numeric integration of VRG(R).

ing VRG(R). This was not fully investigated here, but some investigation was made.

As shown in Figure 26 for RbNe, the results using VRG(R) modified with energy

conservation approach the original results using VRG(R) (without energy conserva-

tion) at low adiabaticities (higher velocities), and approach the results using VQM(R)

(with energy conservation) at high adiabaticities (lower velocities). There are a vast

number of possible forms of the radial coupling function V (R), and the results can

vary drastically based on which form is chosen. (Efforts in this thesis eventually be-

came focused on four forms; analytic integration of VRG(t), numeric integration of

VRG(t), numeric integration of VRG(R), and numeric integration of VQM(R), with the

approximations matched to VQM(R)).
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Figure 23. Ln(Probability) vs Adiabaticity for KHe, KNe, and KAr. Numeric integra-
tion of VRG(R) vs. numeric integration of VQM (R).
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Figure 24. Ln(Probability) vs Adiabaticity for RbHe, RbNe, and RbAr. Numeric
integration of VRG(R) vs. numeric integration of VQM (R).
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Figure 25. Ln(Probability) vs Adiabaticity for CsHe, CsNe, and CsAr. Numeric inte-
gration of VRG(R) vs. numeric integration of VQM (R).
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Figure 26. Ln(Probability) vs Adiabaticity for RbNe. Investigating the effects of the
energy conservation condition by modifying the numeric integration of VRG(R) with
energy conservation. Notice that the results using the modified VRG(R) approach the
(unmodified) VRG(R) results at low adiabaticities (higher velocities), and approach the
VQM (R) results at high adiabaticities (lower velocities).
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V. Discussion

5.1 Comparison with Experimental Data - Support for Validity of Po-

tential Energy Surfaces

As mentioned previously, the adiabatic electronic potential energy surfaces were

calculated using a many-body numerical routine by Blank [1]. These surfaces were

then converted to diabatic surfaces to yield adiabatic electronic potential energy sur-

faces, along with radial coupling functions by Lewis [5]. Lewis also calculated tem-

perature dependent cross sections with a FORTRAN numerical routine using a full

quantum mechanical approach. These cross sections can be used along with the

quantum defect cross sections to predict the total probability of electronic energy

level transition during a collision (see Equation 35). These full-quantum predictions

can be used to validate the radial coupling surfaces that form the basis of the semi-

classical model in this thesis, which in turn can provide insight into the effect of the

approximations made in this thesis. This data is plotted for comparison in Figures 27,

28, and 29, for K, Rb, and Cs respectively. These figures show that a fully quantum

mechanical approach to calculating the probabilities comes very close to predicting

the experimental results for the potassium pairs and for the rubidium pairs, although

the fit is not as good for cesium pairs. This suggests that the radial coupling func-

tions are not a likely source for the discrepancy between the semi-classical models

predictions and the experimental results.

5.2 Choice of Energy Level for Conservation of Energy in VQM(R)

As mentioned in Section 3.6, the quantum mechanical (non-approximated) radial

coupling functions VQM(R) did not extend to R = 0, which caused the introduction

of a turning point based on conservation of energy. This led to the requirement to
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Figure 27. Ln(Probability) vs Adiabaticity for KHe, KNe, and KAr. Numeric integra-
tion of VRG(R) vs. Experimental data and Full Quantum Approach.
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Figure 28. Ln(Probability) vs Adiabaticity for RbHe, RbNe, and RbAr. Numeric
integration of VRG(R) vs. Experimental data and Full Quantum Approach.
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Figure 29. Ln(Probability) vs Adiabaticity for CsHe, CsNe, and CsAr. Numeric inte-
gration of VRG(R) vs. Experimental data and Full Quantum Approach.

choose which energy potential should be used. The decision was made to use an

average of the BΣ1/2 and Π1/2 energy levels. This average also had the benefit of

(loosely) resembling the ground state energy level, XΣ1/2. See Figure 30 for a plot

of the adiabatic electronic potential energy surfaces, along with the radial coupling

functions. See Figure 31 for a plot showing the effect of the choice of energy level for

rubidium and three different noble gas species. The choice of energy level did affect

the shape of the plot, but it did not change the offset enough to imply that choosing

the wrong surface could fully account for the discrepancy between the experimental

results and the results of the semi-classical model.

59



R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

K
H

e

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
ad

ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

K
N

e

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
a
d
ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

K
A

r

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
ad

ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

R
b

H
e

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
ad

ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

R
b

N
e

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
a
d
ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

R
b

A
r

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
ad

ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

C
s
H

e

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
ad

ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

C
s
N

e

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
a
d
ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

R
 (

a
u
)

4
6

8
1
0

1
2

1
4

Energy (au)

×
1
0

-3

-202468

1
0

1
2

C
s
A

r

X
Σ

1
/
2

B
Σ

1
/
2

Π
1
/
2

Π
3
/
2

R
ad

ia
l
C
ou

p
li
n
g
V
(R

)

K
.E
.
=

1 2
µ
v̄
2
(T

=
60
0K

)

B
Σ

1
/
2
Π

1
/
2
A
v
g

F
ig

u
re

3
0
.

E
n

e
rg

y
le

v
e
ls

o
f

a
ll

M
+

N
g

c
o
m

b
in

a
ti

o
n

s,
re

la
ti

v
e

to
th

e
ir

a
sy

m
p

to
ti

c
li

m
it

s.
A

n
a
v
e
ra

g
e

b
e
tw

e
e
n

th
e

B
Σ

1
/
2

a
n

d
Π

1
/
2

e
n

e
rg

y
le

v
e
ls

w
a
s

ch
o
se

n
to

d
e
te

rm
in

e
th

e
tu

rn
in

g
p

o
in

t
fo

r
ra

te
c
a
lc

u
la

ti
o
n

s
u

si
n

g
V
Q
M

(R
).

60



A
d

ia
b

a
ti
c
it
y
 [

u
n

it
le

s
s
]

2
3

4
5

6
7

8
9

1
0

Ln(Probability) [unitless] -5-4-3-2-10

R
b
H
e
V
Q
M
(R

)
X
Σ

1/
2

R
b
H
e
V
Q
M
(R

)
B
Σ

1/
2
Π

1/
2
A
v
g

R
b
H
e
V
Q
M
(R

)
Π

3/
2

R
b
H
e
V
Q
M
(R

)
Π

1/
2

R
b
H
e
V
Q
M
(R

)
B
Σ

1/
2

R
b
N
e
V
Q
M
(R

)
X
Σ

1/
2

R
b
N
e
V
Q
M
(R

)
B
Σ

1/
2
Π

1/
2
A
v
g

R
b
N
e
V
Q
M
(R

)
Π

3/
2

R
b
N
e
V
Q
M
(R

)
Π

1/
2

R
b
N
e
V
Q
M
(R

)
B
Σ

1/
2

R
b
A
r
V
Q
M
(R

)
X
Σ

1/
2

R
b
A
r
V
Q
M
(R

)
B
Σ

1/
2
Π

1/
2
A
v
g

R
b
A
r
V
Q
M
(R

)
Π

3/
2

R
b
A
r
V
Q
M
(R

)
Π

1/
2

R
b
A
r
V
Q
M
(R

)
B
Σ

1/
2

F
ig

u
re

3
1
.

R
e
su

lt
in

g
T

ra
n

si
ti

o
n

P
ro

b
a
b

il
it

ie
s

fo
r

V
a
ri

o
u

s
C

h
o
ic

e
s

o
f

C
o
n

se
rv

e
d

E
n

e
rg

y
L

e
v
e
l.

R
b

H
e

re
su

lt
s

a
re

th
e

g
ro

u
p

o
f

li
n

e
s

o
n

th
e

le
ft

,
R

b
N

e
re

su
lt

s
a
re

th
e

g
ro

u
p

in
th

e
c
e
n
te

r,
a
n

d
R

b
A

r
a
re

o
n

th
e

ri
g
h
t

si
d

e
o
f

th
e

fi
g
u

re
.

61



5.3 Scaling V0, L, andW to Make the Numerical Results for VRG(R) Match

Experimental Results

The results of the probability calculations turn out to be very sensitive to the

radial coupling function approximation’s fit parameters W , V0, and L. Through

trial and error, it was found that applying a scale factor of 0.12 ≈ 1/8.3 to V0

in VRG(R) changed the predicted electron fine structure transition probability in a

collision between rubidium and neon by a factor of approximately 0.014 ≈ 1/69.

This brought the predicted results nearly in line with the experimental results. The

decrease in probability was even across the calculated adiabaticity range (temperature

range of 300K to 900K). This V0 scale factor was then applied to all other M+Ng

combinations, and the results are shown in Figures 33, 34, and 35, for potassium,

rubidium, and cesium, respectively. The combined results for all M+Ng pairs are

shown in Figure 36. The change in probability was approximately 1/69, and was equal

across all collision pairs and all adiabaticities. The scaled radial coupling function is

shown in Figure 32.

Through trial and error, it was also found that applying a scale factor of 0.03 ≈

1/33 to L in VRG(R) changed the predicted electron fine structure transition proba-

bility in a collision between rubidium and neon by an average factor of approximately

0.035 ≈ 1/28. This aligned the central values (at temperature = 600K, adiabaticity

≈ 5.2) of the predicted results and the experimental results. The shift in proba-

bility depended heavily on adiabaticity, α, with α(300K) decreasing by a factor of

approximately 0.008 ≈ 1/126, while α(900K) decreased by a factor of approximately

0.08 ≈ 1/12. This L scale factor was then applied to all other M+Ng combinations,

and the results are shown in Figures 38, 39, and 40, for potassium, rubidium, and

cesium, respectively. The combined results for all M+Ng pairs are shown in Figure

41. The effects of the scaled L varied greatly across collision pair, as well as across
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0.12. Data is shown for RbHe, and VQM (R) is plotted for comparison.
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Figure 33. Scaled VRG(R) radial coupling fit parameter, V0, for KHe, KNe, and KAr.
Experimental data is plotted for comparison. V0 is scaled by a factor of 0.12.
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Figure 34. Scaled VRG(R) radial coupling fit parameter, V0, for RbHe, RbNe, and RbAr.
Experimental data is plotted for comparison. V0 is scaled by a factor of 0.12.
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Figure 35. Scaled VRG(R) radial coupling fit parameter, V0, for CsHe, CsNe, and CsAr.
Experimental data is plotted for comparison. V0 is scaled by a factor of 0.12.

adiabaticity, with changes ranging from a factor of 1/2.4 for KNe at 300K, to 1/187

for CsAr at 300K. The scaled radial coupling function is shown in Figure 37.

It was then also found, through trial and error, that applying a scale factor of 2.6

to W in VRG(R) decreased the predicted electron fine structure transition probability

in a collision between rubidium and neon by an average factor of approximately

0.013 ≈ 1/78. This brought the predicted results for RbNe nearly in line with the

experimental results. The shift in probability depended on adiabaticity, with α(300K)

decreasing by a factor of approximately 0.018 ≈ 1/55, while α(900K) decreased by

a factor of approximately 0.009 ≈ 1/111. This scale factor was then applied to all

other M+Ng combinations, and the results are shown in Figures 43, 44, and 45, for

potassium, rubidium, and cesium, respectively. The results varied across collision

pairs and adiabaticities, but the variation was not as large as it was for the scaling
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Figure 37. VRG(R) radial coupling function with fit parameter, L, scaled by a factor of
0.03. Data is shown for RbHe, and VQM (R) is plotted for comparison.
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Figure 38. Scaled VRG(R) radial coupling fit parameter, L, for KHe, KNe, and KAr.
Experimental data is plotted for comparison. L is scaled by a factor of 0.03.
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Figure 39. Scaled VRG(R) radial coupling fit parameter, L, for RbHe, RbNe, and RbAr.
Experimental data is plotted for comparison. L is scaled by a factor of 0.03.
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Figure 40. Scaled VRG(R) radial coupling fit parameter, L, for CsHe, CsNe, and CsAr.
Experimental data is plotted for comparison. L is scaled by a factor of 0.03.

of L. The combined results for all M+Ng pairs are shown in Figure 46. The scaled

radial coupling function is shown in Figure 42.

It is very interesting to note that different scale factors shift the transition proba-

bilities of specific elements by different amounts, depending on the temperature (and

therefore depending on the adiabaticity). This means that it should be possible to fit

the predicted transition probabilities across a range of temperature (and adiabaticity)

values, rather than just attempting to minimize an average error. This is currently

easier said than done, due to the fact that the best-fit scale factors are currently

found through guessing a value, performing a test run, checking the results, and then

making another guess until the fit is satisfactory. Having the analytic approximation

of VRG(t) may make this task easier.
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Figure 42. VRG(R) radial coupling function with fit parameter, W , scaled by a factor of
2.6. Data is shown for RbHe, and VQM (R) is plotted for comparison.
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Figure 43. Scaled VRG(R) radial coupling fit parameter, W , for KHe, KNe, and KAr.
Experimental data is plotted for comparison. W is scaled by a factor of 2.6.
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Figure 44. Scaled VRG(R) radial coupling fit parameter, W , for RbHe, RbNe, and RbAr.
Experimental data is plotted for comparison. W is scaled by a factor of 2.6.
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Figure 45. Scaled VRG(R) radial coupling fit parameter, W , for CsHe, CsNe, and CsAr.
Experimental data is plotted for comparison. W is scaled by a factor of 2.6.
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VI. Conclusion

6.1 Conclusion

There are a few observations that stand out from the results of the calculations

based on the semi-classical model presented in this thesis. One of the disappointing

observations is that the calculations using the semi-classical model are off by an offset

ranging from about e3 ≈ 20 (using VRG(t)) to e8 ≈ 3, 000 (using VQM(R)), as shown

in Figure 47. Another troubling observation is that some of the probabilities for the

lighter elements are well above 1, which is of course mathematically nonsense (KHe

using VRG(t) is the worst, with a probability of ≈ 500).

Some of the more promising observations include the fact that all of the meth-

ods of calculation that were presented in this thesis have the same general curve of

Ln(Probability) vs. Adiabaticity. Another positive observation is that calculations

using the analytical approximation of the probability integral match the numerical

calculations with VRG(t) very well, supplying cross-validation for both methods. The

analytic approximation offers the huge benefit of being able to make quick modifica-

tions to the radial coupling function’s fit parameters in Mathematica, and having the

results show up almost instantaneously. Next, the calculations using VRG(t) match

fairly well with calculations using VRG(R). The approximations made in converting

VRG(R) to VRG(t) appear to only result in a relatively small offset, without having

any significant effect on the shape of the probability curve. The use of the quantum

mechanical coupling functions VQM(R), actually introduced a much larger error offset

as compared to the rectangular-Gaussian approximations. This may have been due

to the different implementation used for this set of coupling functions, namely the

energy conservation requirement which was necessary to overcome the difficulty of

not having data for R < 3 [au]. Adding energy conservation equates with remov-
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ing an approximation, and would therefore be expected to result in a more accurate

solution. Getting a less accurate solution, as was seen when comparing the results

to experiment data, seems counterintuitive. The radial coupling functions, VQM(R),

themselves appear to be validated, at least for potassium and rubidium, through

quantum mechanical calculations of temperature-dependent cross sections which were

converted to probabilities using the quantum-defect cross sections.

An important thing to note is that the results appear to be very sensitive to the

shape of the radial coupling function, V . An area of further research could be to

investigate the effect of different trajectories, which would effectively be changing

the shape of V (R(t)). In its current form, the C code developed for this thesis is

able to perform calculations on any of the nine M+Ng pairs presented here within

ten minutes on a standard desktop computer, with calculations on some pairs taking

only seconds. The code is fairly modular, with V (R) and R(b, v, t) being separate

functions. It would be fairly straightforward to introduce different forms of V or R

into this code, but care must be taken if the form of V used is no longer an even

function. Approximations were made assuming that V was even, as described in

Section III.
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